Skip to main content Home Skills LLMs & Models plotly Interactive scientific and statistical data visualization library for Python. Use when creating charts, plots, or visualizations including scatter plots, line charts, bar charts, heatmaps, 3D plots, geographic maps, statistical distributions, financial charts, and dashboards. Supports both quick visualizations (Plotly Express) and fine-grained customization (graph objects). Outputs interactive HTML or static images (PNG, PDF, SVG).
bunx add-skill davila7/claude-code-templates -s plotly anthropic anthropic-claude claude claude-code
Plotly
Python graphing library for creating interactive, publication-quality visualizations with 40+ chart types.
Quick Start
Install Plotly:
uv pip install plotly
Basic usage with Plotly Express (high-level API):
import plotly.express as px
import pandas as pd
df = pd.DataFrame({
'x': [1, 2, 3, 4],
'y': [10, 11, 12, 13]
})
fig = px.scatter(df, x='x', y='y', title='My First Plot')
fig.show()
Choosing Between APIs
Use Plotly Express (px)
For quick, standard visualizations with sensible defaults:
Working with pandas DataFrames
Creating common chart types (scatter, line, bar, histogram, etc.)
Need automatic color encoding and legends
Want minimal code (1-5 lines)
See reference/plotly-express.md for complete guide.
Use Graph Objects (go)
For fine-grained control and custom visualizations:
Chart types not in Plotly Express (3D mesh, isosurface, complex financial charts)
Building complex multi-trace figures from scratch
Need precise control over individual components
Creating specialized visualizations with custom shapes and annotations
See reference/graph-objects.md for complete guide.
Note: Plotly Express returns graph objects Figure, so you can combine approaches:
fig = px.scatter(df, x='x', y='y')
fig.update_layout(title='Custom Title') # Use go methods on px figure
fig.add_hline(y=10) # Add shapes
Core Capabilities
1. Chart Types Plotly supports 40+ chart types organized into categories:
Basic Charts: scatter, line, bar, pie, area, bubble
Statistical Charts: histogram, box plot, violin, distribution, error bars
Scientific Charts: heatmap, contour, ternary, image display
Financial Charts: candlestick, OHLC, waterfall, funnel, time series
Maps: scatter maps, choropleth, density maps (geographic visualization)
3D Charts: scatter3d, surface, mesh, cone, volume
Specialized: sunburst, treemap, sankey, parallel coordinates, gauge
2. Layouts and Styling Subplots: Create multi-plot figures with shared axes:
from plotly.subplots import make_subplots
import plotly.graph_objects as go
fig = make_subplots(rows=2, cols=2, subplot_titles=('A', 'B', 'C', 'D'))
fig.add_trace(go.Scatter(x=[1, 2], y=[3, 4]), row=1, col=1)
Templates: Apply coordinated styling:
fig = px.scatter(df, x='x', y='y', template='plotly_dark')
# Built-in: plotly_white, plotly_dark, ggplot2, seaborn, simple_white
Customization: Control every aspect of appearance:
Colors (discrete sequences, continuous scales)
Fonts and text
Axes (ranges, ticks, grids)
Legends
Margins and sizing
Annotations and shapes
3. Interactivity Built-in interactive features:
Hover tooltips with customizable data
Pan and zoom
Legend toggling
Box/lasso selection
Rangesliders for time series
Buttons and dropdowns
Animations
# Custom hover template
fig.update_traces(
hovertemplate='<b>%{x}</b><br>Value: %{y:.2f}<extra></extra>'
)
# Add rangeslider
fig.update_xaxes(rangeslider_visible=True)
# Animations
fig = px.scatter(df, x='x', y='y', animation_frame='year')
4. Export Options fig.write_html('chart.html') # Full standalone
fig.write_html('chart.html', include_plotlyjs='cdn') # Smaller file
Static Images (requires kaleido):
fig.write_image('chart.png') # PNG
fig.write_image('chart.pdf') # PDF
fig.write_image('chart.svg') # SVG
Common Workflows
Scientific Data Visualization import plotly.express as px
# Scatter plot with trendline
fig = px.scatter(df, x='temperature', y='yield', trendline='ols')
# Heatmap from matrix
fig = px.imshow(correlation_matrix, text_auto=True, color_continuous_scale='RdBu')
# 3D surface plot
import plotly.graph_objects as go
fig = go.Figure(data=[go.Surface(z=z_data, x=x_data, y=y_data)])
Statistical Analysis # Distribution comparison
fig = px.histogram(df, x='values', color='group', marginal='box', nbins=30)
# Box plot with all points
fig = px.box(df, x='category', y='value', points='all')
# Violin plot
fig = px.violin(df, x='group', y='measurement', box=True)
Time Series and Financial # Time series with rangeslider
fig = px.line(df, x='date', y='price')
fig.update_xaxes(rangeslider_visible=True)
# Candlestick chart
import plotly.graph_objects as go
fig = go.Figure(data=[go.Candlestick(
x=df['date'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close']
)])
Multi-Plot Dashboards from plotly.subplots import make_subplots
import plotly.graph_objects as go
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Scatter', 'Bar', 'Histogram', 'Box'),
specs=[[{'type': 'scatter'}, {'type': 'bar'}],
[{'type': 'histogram'}, {'type': 'box'}]]
)
fig.add_trace(go.Scatter(x=[1, 2, 3], y=[4, 5, 6]), row=1, col=1)
fig.add_trace(go.Bar(x=['A', 'B'], y=[1, 2]), row=1, col=2)
fig.add_trace(go.Histogram(x=data), row=2, col=1)
fig.add_trace(go.Box(y=data), row=2, col=2)
fig.update_layout(height=800, showlegend=False)
Integration with Dash For interactive web applications, use Dash (Plotly's web app framework):
import dash
from dash import dcc, html
import plotly.express as px
app = dash.Dash(__name__)
fig = px.scatter(df, x='x', y='y')
app.layout = html.Div([
html.H1('Dashboard'),
dcc.Graph(figure=fig)
])
app.run_server(debug=True)
Reference Files
Additional Resources