Skip to main content Home Skills Automation & Agents twinmind-observability twinmind-observability jeremylongshore
Set up comprehensive observability for TwinMind integrations with metrics, traces, and alerts.
Use when implementing monitoring for TwinMind operations, setting up dashboards,
or configuring alerting for meeting AI integration health.
Trigger with phrases like "twinmind monitoring", "twinmind metrics",
"twinmind observability", "monitor twinmind", "twinmind alerts", "twinmind tracing".
bunx add-skill jeremylongshore/claude-code-plugins-plus-skills -s twinmind-observability ai automation claude-code devops marketplace mcp
TwinMind Observability
Overview
Set up comprehensive observability for TwinMind integrations including metrics, distributed tracing, logging, and alerting.
Prerequisites
Prometheus or compatible metrics backend
OpenTelemetry SDK installed
Grafana or similar dashboarding tool
AlertManager configured
Metrics Collection
Key Metrics
Metric Type Description twinmind_transcriptions_totalCounter Total transcription requests twinmind_transcription_duration_secondsHistogram Transcription processing time twinmind_transcription_audio_hoursCounter Total audio hours processed twinmind_errors_total
twinmind_rate_limit_remainingGauge Rate limit headroom
twinmind_summary_requests_totalCounter Summary generation requests
twinmind_action_items_extractedCounter Action items extracted
twinmind_ai_tokens_usedCounter AI tokens consumed
Prometheus Metrics Implementation // src/observability/metrics.ts
import { Registry, Counter, Histogram, Gauge, Summary } from 'prom-client';
const registry = new Registry();
// Transcription metrics
export const transcriptionCounter = new Counter({
name: 'twinmind_transcriptions_total',
help: 'Total TwinMind transcription requests',
labelNames: ['status', 'model', 'language'],
registers: [registry],
});
export const transcriptionDuration = new Histogram({
name: 'twinmind_transcription_duration_seconds',
help: 'TwinMind transcription processing duration',
labelNames: ['model'],
buckets: [1, 5, 10, 30, 60, 120, 300, 600], // Up to 10 minutes
registers: [registry],
});
export const audioHoursProcessed = new Counter({
name: 'twinmind_transcription_audio_hours',
help: 'Total audio hours processed',
labelNames: ['model'],
registers: [registry],
});
// API metrics
export const apiRequestCounter = new Counter({
name: 'twinmind_api_requests_total',
help: 'Total TwinMind API requests',
labelNames: ['method', 'endpoint', 'status'],
registers: [registry],
});
export const apiLatency = new Histogram({
name: 'twinmind_api_latency_seconds',
help: 'TwinMind API request latency',
labelNames: ['method', 'endpoint'],
buckets: [0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10],
registers: [registry],
});
// Error metrics
export const errorCounter = new Counter({
name: 'twinmind_errors_total',
help: 'TwinMind errors by type',
labelNames: ['error_type', 'operation'],
registers: [registry],
});
// Rate limit metrics
export const rateLimitRemaining = new Gauge({
name: 'twinmind_rate_limit_remaining',
help: 'Remaining rate limit quota',
labelNames: ['endpoint'],
registers: [registry],
});
// AI usage metrics
export const aiTokensUsed = new Counter({
name: 'twinmind_ai_tokens_used',
help: 'AI tokens consumed',
labelNames: ['operation'],
registers: [registry],
});
// Summary generation
export const summaryCounter = new Counter({
name: 'twinmind_summary_requests_total',
help: 'Summary generation requests',
labelNames: ['status', 'format'],
registers: [registry],
});
export const actionItemsExtracted = new Counter({
name: 'twinmind_action_items_extracted',
help: 'Action items extracted from meetings',
registers: [registry],
});
export { registry };
Instrumented Client // src/twinmind/instrumented-client.ts
import {
transcriptionCounter,
transcriptionDuration,
audioHoursProcessed,
apiRequestCounter,
apiLatency,
errorCounter,
rateLimitRemaining,
} from '../observability/metrics';
export class InstrumentedTwinMindClient {
private client: TwinMindClient;
constructor(config: TwinMindConfig) {
this.client = new TwinMindClient(config);
}
async transcribe(audioUrl: string, options?: TranscriptionOptions): Promise<Transcript> {
const timer = transcriptionDuration.startTimer({ model: options?.model || 'ear-3' });
try {
const result = await this.client.transcribe(audioUrl, options);
// Record success metrics
transcriptionCounter.inc({
status: 'success',
model: options?.model || 'ear-3',
language: result.language,
});
// Record audio hours
audioHoursProcessed.inc(
{ model: options?.model || 'ear-3' },
result.duration_seconds / 3600
);
return result;
} catch (error: any) {
transcriptionCounter.inc({
status: 'error',
model: options?.model || 'ear-3',
language: 'unknown',
});
errorCounter.inc({
error_type: error.code || 'unknown',
operation: 'transcribe',
});
throw error;
} finally {
timer();
}
}
async request<T>(method: string, endpoint: string, data?: any): Promise<T> {
const timer = apiLatency.startTimer({ method, endpoint });
try {
const response = await this.client.request(method, endpoint, data);
apiRequestCounter.inc({ method, endpoint, status: 'success' });
// Update rate limit gauge from response headers
if (response.headers?.['x-ratelimit-remaining']) {
rateLimitRemaining.set(
{ endpoint },
parseInt(response.headers['x-ratelimit-remaining'])
);
}
return response.data;
} catch (error: any) {
apiRequestCounter.inc({
method,
endpoint,
status: error.response?.status || 'error',
});
throw error;
} finally {
timer();
}
}
}
Distributed Tracing
OpenTelemetry Setup // src/observability/tracing.ts
import { NodeSDK } from '@opentelemetry/sdk-node';
import { getNodeAutoInstrumentations } from '@opentelemetry/auto-instrumentations-node';
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http';
import { Resource } from '@opentelemetry/resources';
import { SemanticResourceAttributes } from '@opentelemetry/semantic-conventions';
import { trace, SpanStatusCode, SpanKind } from '@opentelemetry/api';
// Initialize SDK
const sdk = new NodeSDK({
resource: new Resource({
[SemanticResourceAttributes.SERVICE_NAME]: 'twinmind-integration',
[SemanticResourceAttributes.SERVICE_VERSION]: process.env.npm_package_version,
[SemanticResourceAttributes.DEPLOYMENT_ENVIRONMENT]: process.env.NODE_ENV,
}),
traceExporter: new OTLPTraceExporter({
url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT || 'http://localhost:4318/v1/traces',
}),
instrumentations: [getNodeAutoInstrumentations()],
});
sdk.start();
// Custom tracer for TwinMind operations
export const tracer = trace.getTracer('twinmind-client');
// Traced operation wrapper
export async function tracedOperation<T>(
operationName: string,
operation: () => Promise<T>,
attributes?: Record<string, string | number>
): Promise<T> {
return tracer.startActiveSpan(
`twinmind.${operationName}`,
{ kind: SpanKind.CLIENT, attributes },
async (span) => {
try {
const result = await operation();
span.setStatus({ code: SpanStatusCode.OK });
return result;
} catch (error: any) {
span.setStatus({
code: SpanStatusCode.ERROR,
message: error.message,
});
span.recordException(error);
throw error;
} finally {
span.end();
}
}
);
}
// Traced TwinMind client
export class TracedTwinMindClient {
private client: TwinMindClient;
async transcribe(audioUrl: string, options?: TranscriptionOptions): Promise<Transcript> {
return tracedOperation(
'transcribe',
() => this.client.transcribe(audioUrl, options),
{
'twinmind.audio_url': audioUrl,
'twinmind.model': options?.model || 'ear-3',
'twinmind.diarization': options?.diarization ? 'true' : 'false',
}
);
}
async summarize(transcriptId: string): Promise<Summary> {
return tracedOperation(
'summarize',
() => this.client.summarize(transcriptId),
{ 'twinmind.transcript_id': transcriptId }
);
}
}
Structured Logging // src/observability/logging.ts
import pino from 'pino';
export const logger = pino({
name: 'twinmind',
level: process.env.LOG_LEVEL || 'info',
formatters: {
level: (label) => ({ level: label }),
},
redact: ['apiKey', 'authorization', 'password'],
});
// Operation-specific logging
export function logTwinMindOperation(
operation: string,
data: Record<string, any>,
duration?: number
): void {
logger.info({
service: 'twinmind',
operation,
duration_ms: duration,
...data,
});
}
// Error logging
export function logTwinMindError(
operation: string,
error: Error,
context?: Record<string, any>
): void {
logger.error({
service: 'twinmind',
operation,
error: {
name: error.name,
message: error.message,
stack: error.stack,
},
...context,
});
}
Alert Configuration
Prometheus AlertManager Rules # alerts/twinmind_alerts.yaml
groups:
- name: twinmind_alerts
rules:
- alert: TwinMindHighErrorRate
expr: |
rate(twinmind_errors_total[5m]) /
rate(twinmind_api_requests_total[5m]) > 0.05
for: 5m
labels:
severity: warning
service: twinmind
annotations:
summary: "TwinMind error rate > 5%"
description: "Error rate is {{ $value | humanizePercentage }}"
- alert: TwinMindHighLatency
expr: |
histogram_quantile(0.95,
rate(twinmind_api_latency_seconds_bucket[5m])
) > 5
for: 5m
labels:
severity: warning
service: twinmind
annotations:
summary: "TwinMind P95 latency > 5s"
description: "P95 latency is {{ $value | humanizeDuration }}"
- alert: TwinMindTranscriptionFailures
expr: |
increase(twinmind_transcriptions_total{status="error"}[15m]) > 5
for: 5m
labels:
severity: warning
service: twinmind
annotations:
summary: "TwinMind transcription failures increasing"
description: "{{ $value }} failures in last 15 minutes"
- alert: TwinMindRateLimitApproaching
expr: |
twinmind_rate_limit_remaining < 10
for: 1m
labels:
severity: warning
service: twinmind
annotations:
summary: "TwinMind rate limit approaching"
description: "Only {{ $value }} requests remaining"
- alert: TwinMindRateLimitExceeded
expr: |
increase(twinmind_errors_total{error_type="RATE_LIMITED"}[5m]) > 0
for: 1m
labels:
severity: critical
service: twinmind
annotations:
summary: "TwinMind rate limit exceeded"
description: "Rate limit errors detected"
- alert: TwinMindAPIDown
expr: |
up{job="twinmind"} == 0
for: 1m
labels:
severity: critical
service: twinmind
annotations:
summary: "TwinMind integration is down"
description: "Health check failing"
- alert: TwinMindHighTokenUsage
expr: |
increase(twinmind_ai_tokens_used[24h]) > 1500000
for: 5m
labels:
severity: warning
service: twinmind
annotations:
summary: "High TwinMind token usage"
description: "{{ $value }} tokens used in 24h (limit: 2M)"
Grafana Dashboard {
"dashboard": {
"title": "TwinMind Integration",
"panels": [
{
"title": "Transcription Rate",
"type": "graph",
"targets": [{
"expr": "rate(twinmind_transcriptions_total[5m])",
"legendFormat": "{{status}}"
}]
},
{
"title": "API Latency (P50/P95/P99)",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.5, rate(twinmind_api_latency_seconds_bucket[5m]))",
"legendFormat": "P50"
},
{
"expr": "histogram_quantile(0.95, rate(twinmind_api_latency_seconds_bucket[5m]))",
"legendFormat": "P95"
},
{
"expr": "histogram_quantile(0.99, rate(twinmind_api_latency_seconds_bucket[5m]))",
"legendFormat": "P99"
}
]
},
{
"title": "Error Rate",
"type": "graph",
"targets": [{
"expr": "rate(twinmind_errors_total[5m])",
"legendFormat": "{{error_type}}"
}]
},
{
"title": "Rate Limit Remaining",
"type": "gauge",
"targets": [{
"expr": "twinmind_rate_limit_remaining"
}]
},
{
"title": "Audio Hours Processed (24h)",
"type": "stat",
"targets": [{
"expr": "increase(twinmind_transcription_audio_hours[24h])"
}]
},
{
"title": "AI Tokens Used (24h)",
"type": "stat",
"targets": [{
"expr": "increase(twinmind_ai_tokens_used[24h])"
}]
}
]
}
}
Metrics Endpoint // src/api/metrics.ts
import express from 'express';
import { registry } from '../observability/metrics';
const router = express.Router();
router.get('/metrics', async (req, res) => {
res.set('Content-Type', registry.contentType);
res.send(await registry.metrics());
});
export default router;
Output
Prometheus metrics implementation
Distributed tracing with OpenTelemetry
Structured logging with Pino
AlertManager rules
Grafana dashboard configuration
Metrics endpoint
Error Handling Issue Cause Solution Missing metrics No instrumentation Wrap client calls Trace gaps Missing propagation Check context headers Alert storms Wrong thresholds Tune alert rules High cardinality Too many labels Reduce label values
Resources
Next Steps For incident response, see twinmind-incident-runbook.